此次返校,他拜访了导师萨克斯,还四处转了转。
就在散步中,他突然回忆起——当年自己徘徊于校园小径,苦苦思索的一个数学问题:
没错,就是那个对“并封闭集合猜想”的证明。
读博期间,Gilmer绞尽脑汁,花了一整年时间却毫无进展,只是搞明白了为什么这一看似简单的问题难以解决。
为此,他还去找过导师萨克斯。但导师也曾在该问题上停滞不前,因而他既不看好Gilmer的研究,也不愿重新碰这一领域。据Gilmer回忆,当时导师差点把他赶出房间。
但现在,重回校园转一圈的Gilmer有了个新想法:用信息论及相关原理解决并封闭猜想问题。
Gilmer的思路是找反例。
根据并封闭集合猜想,一个正常的并封闭集族中,至少应该有一个元素在多于一半的集合中出现。
既然如此,只要想办法构造一个特殊的集族,里面没有一个元素出现在超过1%的集合中,这个猜想就会被证伪,反之如果构造不出来,那么猜想就可能成立。
现在,我们用信息论视角看这一猜想:
正常来说,如果从集族中任意挑出两个集合,这两个集合取并集后,并集中的元素比原来两个集合更多,其信息熵应该比原来的单独两个集合更低。
然而如果基于“没有一个元素出现在超过1%集合”这个限制条件,任意两个集合取并集后,计算出来的信息熵竟然比原来的单独两个集合更高。
这显然是不可能的,因此不存在这么一个特殊的集族,Glimer的反例也没有找到。
但这也就意味着在“并封闭”集族中,至少存在一个元素,会出现在超过1%的集合中。
2022年11月16日,Gilmer将这一思路写成论文,发表在了arXiv上。
当然,他这篇论文还不是“完全体”,也就是说并没有完全证明并封闭集合猜想——
毕竟这只是至少1%,还不意味着原来的并封闭集合猜想中的至少50%就成立。
但这个新思路已经足够让学界震动。
普林斯顿大学数学家RyanAlweiss评价“引入信息量”这一操作:非常聪明。
仅仅几天后,就有3个不同的数学研究组基于他的研究,先后发表了研究论文,随后也有更多研究者跟进,他们所在院校机构有牛津、普林斯顿、哥大、布里斯托等。
在后续研究中,对“并封闭集合猜想”的概率值证明,被推进到了38%。
令这些数学家好奇的是,基于Gilmer的研究,他自己上手将概率值推进到38%并不难。
对此,Gilmer表示,自己已经五年多没碰数学了,确实不知道如何进行分析工作来将其进一步推进下去。
不过,他也认为,正是因为对相关数学方法的生疏,让他跳出了常理,用圈外办法取得突破。
喜欢数学心请大家收藏:()数学心
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
相邻推荐:叛逆契约兽 穿越成雍正女儿后 娇术 白月光神君和他的怨种小徒弟 重生回到法庭上,我审判百万人! 你不是说拍完必亏的吗 民间诡病实录 铸星笔记 作死系主播:这男人太听劝了! 自我攻略的世界 她见青山 从柯南元年开始建立穿越者联盟 末世大洪水:女邻居上门借粮 龙族:归来的他,反抗天命 重生60:从深山打猎开始致富 偏偏宠上你 狂龙出狱 听雨一夜梦境来 哥们竟是曹操型上单? 御灵山庄
好书推荐:揉碎温柔为夫体弱多病和情敌在古代种田搞基建我有了首都户口暗恋指南星际双修指南我只是一朵云瑜伽老师花样多妈宝女她躺平爆红了你不能这么对我带着战略仓库回大唐背叛宗门,你们后悔什么?重生之护花痞少许你三世民国重生回到古代当夫子太子殿下躺平日常我的外甥是雍正公主 驸马 重生重生宠妻时光盗不走的爱人古穿今之甜妻混世小术士高手她带着全家翻身借一缕阳光路过爸爸偷了我的女朋友的东西后妈卷走40万失踪后续